|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Известно, что область определения функции f(x) – отрезок [–1, 1] и f(f(x)) = – x при всех x, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции f(x). б) Можно ли это сделать, если область определения функции – интервал (–1, 1)? Вся числовая ось? У Васи есть неограниченный запас брусков 1×1×3 и уголков из трёх кубиков 1×1×1. Вася целиком заполнил ими коробку m×n×k, где $m, n, k$ – целые числа, большие 1. Докажите, что можно было обойтись лишь уголками. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 121]
Напомним, что игра в "морской бой" начинается с того, что на доске размером 10×10 клеток расставляют один "корабль" из четырёх клеток, два – из трёх клеток, три – из двух, и четыре одноклеточных (такие, как на рисунке). По правилам "корабли" не должны касаться, даже углами. До какого наименьшего размера можно уменьшить квадратное поле для игры, сохранив это правило?
Сложите из трёх одинаковых клетчатых фигур без оси симметрии фигуру с осью симметрии.
Петя расставляет 500 королей на клетках доски 100×50 так, чтобы они не били друг друга. А Вася – 500 королей на белых клетках (в шахматной раскраске) доски 100×100 так, чтобы они не били друг друга. У кого больше способов это сделать?
У Васи есть неограниченный запас брусков 1×1×3 и уголков из трёх кубиков 1×1×1. Вася целиком заполнил ими коробку m×n×k, где $m, n, k$ – целые числа, большие 1. Докажите, что можно было обойтись лишь уголками.
Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 121] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|