|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости отмечено N = 3K точек. Будем рассматривать такие варианты построения K невырожденных треугольников с вершинами в этих точках, при которых каждая из заданных точек является вершиной какого-либо треугольника. Точки расположены так, что хотя бы одно построение с указанным свойством существует. Требуется определить тот вариант, при котором суммарная площадь полученных K треугольников минимальна. Входные данные Во входном файле содержатся (в указанном порядке) целое число N (1 ≤ N ≤ 30) и N пар вещественных чисел, задающих координаты точек. Числа разделяются пробелами и/или символами перевода строки. Выходные данные Первая строка выходного файла должна содержать минимально возможное значение суммарной площади. В каждую из следующих K строк запишите тройку номеров вершин, образующих очередной из треугольников. Номера вершин разделяются пробелом. Пример входного файла 6 0 0 1 0 10 0 0 2 12 0 10 1 Пример выходного файла 2 1 2 4 3 5 6 В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками. Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 264]
В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
1) В каком отношении эта плоскость делит диагональ DB1? 2) Найдите площадь полученного сечения.
Известно, что ортогональные проекции некоторого тела на две непараллельные плоскости являются кругами. Докажите, что эти круги равны.
Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 264] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|