ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Вниз   Решение


В треугольнике KLM взяты точка A на стороне LM, а точка B – на стороне KM. Отрезки KA и LB пересекаются в точке O,  LA : AM = 3 : 4,  KO : OA = 3 : 2.
Найдите  LO : OB.

ВверхВниз   Решение


Автор: Анджанс А.

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., n.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

ВверхВниз   Решение


Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
  а) Сколькими способами она может добраться до крайнего правого поля?
  б) Сколькими способами она может добраться до крайнего правого поля ровно за семь ходов?

ВверхВниз   Решение


Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

ВверхВниз   Решение


На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 143]      



Задача 65147

Темы:   [ Геометрия на клетчатой бумаге ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 6,7

На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.

Прислать комментарий     Решение

Задача 65571

Темы:   [ Геометрия на клетчатой бумаге ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 8,9,10,11

В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?

Прислать комментарий     Решение

Задача 65790

Темы:   [ Геометрия на клетчатой бумаге ]
[ Примеры и контрпримеры. Конструкции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На клетчатой бумаге отметьте три узла так, чтобы в образованном ими треугольнике сумма двух меньших медиан равнялась полупериметру.

Прислать комментарий     Решение

Задача 65887

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6

На клетчатой бумаге изобразите многоугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

Прислать комментарий     Решение

Задача 65892

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6

На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .