ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Числа a и b таковы, что каждый из двух квадратных трёхчленов  x² + ax + b  и  x² + bx + a  имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.

Вниз   Решение


Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

ВверхВниз   Решение


Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на одной прямой (Папп).

ВверхВниз   Решение


Даны два треугольника $ABC$ и $A'B'C'$. Прямые $AB$ и $A'B'$ пересекаются в точке $C_1$, а параллельные им прямые, проходящие через $C$ и $C'$, соответственно, в точке $C_2$. Точки $A_1$, $A_2$, $B_1$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

ВверхВниз   Решение


Прямые a, b, c пересекаются в одной точке O. В треугольниках A1B1C1 и A2B2C2 вершины A1 и A2 лежат на прямой a; B1 и B2 — на прямой b; C1 и C2 — на прямой c. A, B, C — точки пересечения прямых B1C1 и B2C2, C1A1 и C2A2, A1B1 и A2B2 соответственно. Докажите, что точки A, B, C лежат на одной прямой (Дезарг).

ВверхВниз   Решение


Дана правильная треугольная пирамида BCDE ( B – вершина, CDE – основание). Известно, что CD = a , BC = b . Пирамиду пересекает плоскость γ , параллельная рёбрам BC и DE . На каком расстоянии от ребра DE должна быть проведена плоскость γ , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

ВверхВниз   Решение


Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .

ВверхВниз   Решение


Даны три квадратных трёхчлена:  x² + b1x + c1x² + b2x + c2  и  x² + ½ (b1 + b2)x + ½ (c1 + c2).  Известно, что их сумма имеет корни (возможно, два совпадающих). Докажите, что хотя бы у двух из этих трёхчленов также есть корни (возможно, два совпадающих).

ВверхВниз   Решение


Точки A1, B1, C1 лежат соответственно на сторонах BC, AC, AB треугольника ABC, причём отрезки AA1, BB1, CC1 пересекаются в точке K.
Докажите, что     и  

ВверхВниз   Решение


Для квадратного трёхчлена  f(x) и некоторых действительных чисел l, t и v выполнены равенства:  f(l) = t + vf(t) = l + vf(v) = l + t.
Докажите, что среди чисел l, t и v есть равные.

ВверхВниз   Решение


Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений  (x – a)(x – b) = x – c,  (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b  имеют решение.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 119]      



Задача 64344

Темы:   [ Исследование квадратного трехчлена ]
[ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 3+
Классы: 9,10

Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений  (x – a)(x – b) = x – c,  (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b  имеют решение.

Прислать комментарий     Решение

Задача 64553

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3+

Для квадратного трёхчлена  f(x) и некоторых действительных чисел l, t и v выполнены равенства:  f(l) = t + vf(t) = l + vf(v) = l + t.
Докажите, что среди чисел l, t и v есть равные.

Прислать комментарий     Решение

Задача 65128

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 10,11

Автор: Храбров А.

Квадратный трёхчлен  f(x) имеет два различных корня. Оказалось, что для любых чисел a и b верно неравенство  f(a² + b²) ≥ f(2ab).
Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.

Прислать комментарий     Решение

Задача 65250

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Числа a и b таковы, что каждый из двух квадратных трёхчленов  x² + ax + b  и  x² + bx + a  имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.

Прислать комментарий     Решение

Задача 65519

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 9,10,11

Даны три квадратных трёхчлена:  x² + b1x + c1x² + b2x + c2  и  x² + ½ (b1 + b2)x + ½ (c1 + c2).  Известно, что их сумма имеет корни (возможно, два совпадающих). Докажите, что хотя бы у двух из этих трёхчленов также есть корни (возможно, два совпадающих).

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 119]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .