|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке. Пусть E — середина стороны AB квадрата ABCD, а точки F и G выбраны на сторонах BC и CD так, что AG| EF. Докажите, что отрезок FG касается окружности, вписанной в квадрат ABCD. Известно, что x1, x2, x3 – корни уравнения x3 – 2x2 + x + 1 = 0. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
Выразите через элементарные симметрические многочлены следующие выражения:
Известно, что x1, x2, x3 – корни уравнения x3 – 2x2 + x + 1 = 0.
Известно, что целые числа a, b, c удовлетворяют равенству a + b + c = 0. Докажите, что 2a4 + 2b4 + 2c4 – квадрат целого числа.
Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)².
Докажите, что равенство 4p³ + 27q² = 0 является необходимым и достаточным условием для совпадения по крайней мере двух корней уравнения
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|