ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении  1 : 3.  Найдите стороны параллелограмма.

Вниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

ВверхВниз   Решение


Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?

ВверхВниз   Решение


Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

ВверхВниз   Решение


Пусть при инверсии относительно окружности с центром O точка A переходит в точку A' , а точка B — в B' . Докажите, что треугольники AOB и B'OA' подобны.

ВверхВниз   Решение


Продолжения двух противоположных сторон AB и CD четырёхугольника ABCD пересекаются под углом α, продолжения двух других противоположных сторон пересекаются под тем же углом. Докажите, что два угла в четырёхугольнике равны, и найдите разность двух других его углов.

ВверхВниз   Решение


На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

ВверхВниз   Решение


Какие значения может принимать:  а) наибольший угол треугольника;  б) наименьший угол треугольника;  в) средний по величине угол треугольника?

ВверхВниз   Решение


Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



Задача 56462

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Задача 55712

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.

Прислать комментарий     Решение


Задача 78076

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Точка O — центр круга, описанного около треугольника ABC. Точки A1, B1 и C1 симметричны точке O относительно сторон треугольника ABC. Докажите, что все высоты треугольника A1B1C1 проходят через точку O, а все высоты треугольника ABC проходят через центр круга, описанного около треугольника A1B1C1.
Прислать комментарий     Решение


Задача 55713

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны.

Прислать комментарий     Решение


Задача 32105

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Окружности (построения) ]
[ Свойства симметрии и центра симметрии ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 7,8,9

Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .