ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 110]      



Задача 57856

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

Даны непересекающиеся хорды AB и CD окружности и точка J на хорде CD. Постройте на окружности точку X так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, делящийся точкой J пополам.
Прислать комментарий     Решение


Задача 57857

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

Через общую точку A окружностей S1 и S2 проведите прямую l так, чтобы разность длин хорд, высекаемых на l окружностями S1 и S2 имела заданную величину a.
Прислать комментарий     Решение


Задача 97885

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5
Классы: 8,9,10,11

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
  1) любая фигура с любого поля бьёт не более 20 полей и
  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
  а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Прислать комментарий     Решение

Задача 115332

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5
Классы: 8,9

Дан равнобедренный треугольник ABC ( AB=BC ). Выбрана точка X на стороне AC . Окружность проходит через точку X , касается стороны AC и пересекает описанную окружность треугольника ABC в таких точках M и N , что прямая MN делит отрезок BX пополам и пересекает стороны AB и BC в точках P и Q . Докажите, что описанная окружность треугольника BPQ проходит через центр описанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 116165

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
[ Гомотетия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Радикальная ось ]
Сложность: 5
Классы: 10,11

Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника ABC; описанные окружности треугольников ABC и A1B1C, вторично пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .