|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих. Сторона основания правильной шестиугольной пирамиды равна Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) и D(1;3;2) . Найдите расстояние от точки D до плоскости ABC . Найдите площадь трапеции, у которой основания равны 10 и 26, а диагонали перпендикулярны боковым сторонам.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232]
AM — биссектриса треугольника ABC. Точка D принадлежит
стороне AC, причём
Найдите площадь трапеции, у которой основания равны 10 и 26, а диагонали перпендикулярны боковым сторонам.
Точки A1 и B1 принадлежат сторонам соответственно OA и OB угла AOB, не равного 180o, и OA . OA1 = OB . OB1. Докажите, что точки A, B, A1, B1 принадлежат одной окружности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|