|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что n³ + 5n делится на 6 при любом целом n. а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу? В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника? Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке. В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 240]
Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём ∠AHB = 120°, а биссектрисы, проведённые из вершин B и C, – в точке K, причём ∠BKC = 130°. Найдите угол ABC.
В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC.
Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.
В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE.
Из точки пересечения двух биссектрис сторона треугольника видна под углом 110°. Найдите угол треугольника, противолежащий этой стороне.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 240] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|