Страница: 1
2 3 4 5 6 7 >> [Всего задач: 74]
Дан прямоугольный треугольник.
Впишите в него прямоугольник с общим прямым углом, у которого
диагональ минимальна.
Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.
Пусть AB – диаметр окружности, C – некоторая точка плоскости. Прямые AC и BC пересекают окружность в точках M и N соответственно. Прямые MB и NA пересекаютcя в точке K. Найдите угол между прямыми CK и AB.
В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что AK·BL·CH = AL·BH·CK = HK·KL·LH.
|
|
Сложность: 3 Классы: 9,10,11
|
Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 74]