ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 238]      



Задача 108621

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC биссектриса, проведённая из вершины A, высота, проведённая из вершины B, и серединный перпендикуляр к стороне AB пересекаются в одной точке. Найдите угол при вершине A.

Прислать комментарий     Решение

Задача 108896

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильный (равносторонний) треугольник ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В остроугольном неравностороннем треугольнике через одну вершину проведена высота, через другую – медиана, через третью биссектриса.
Докажите, что если проведённые линии, пересекаясь, образуют треугольник, то он не может быть равносторонним.

Прислать комментарий     Решение

Задача 110805

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что  BD = AB.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 111361

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Середина одной из сторон треугольника и основания высот, опущенных на две другие стороны, образуют равносторонний треугольник.
Верно ли, что исходный треугольник тоже равносторонний?

Прислать комментарий     Решение

Задача 111600

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 238]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .