ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Вниз   Решение


Известно, что AE и CD — биссектрисы треугольника ABC, $ \angle$CDE = 30o. Докажите, что один из углов треугольника ABC равен 60o или 120o.

ВверхВниз   Решение


Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1443]      



Задача 53837

Темы:   [ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
Найдите площадь треугольника ABC, если известно, что площадь треугольника ADC в три раза больше площади треугольника BCD.

Прислать комментарий     Решение

Задача 53897

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что  AK·BL·CH = AL·BH·CK = HK·KL·LH.

Прислать комментарий     Решение

Задача 54126

Темы:   [ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

Прислать комментарий     Решение

Задача 54138

Темы:   [ Средняя линия треугольника ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9


В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC . Найдите угол, образованный продолжением сторон AB и CD .
Прислать комментарий     Решение


Задача 54141

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Две медианы треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1443]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .