ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками.
Сколько человек в классе?

Вниз   Решение


Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

ВверхВниз   Решение


а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
б) Доказать обратное: если в связном графе вершин с нечётной степенью не больше двух, то в нём есть эйлеров путь.

ВверхВниз   Решение


Можно ли составить магический квадрат из первых 36 простых чисел?
Магический квадрат – это квадратная таблица, заполненная числами, в которой суммы чисел во всех строках и столбцах равны.

ВверхВниз   Решение


Автор: Фольклор

У Ильи есть табличка $3\times 3$, заполненная числами от $1$ до $9$ так, как в таблице слева. За один ход Илья может поменять местами любые две строчки или любые два столбца. Может ли он за несколько ходов получить таблицу справа?

1 2 3
4 5 6
7 8 9
1 4 7
2 5 8
3 6 9

ВверхВниз   Решение


Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?

ВверхВниз   Решение


Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 105]      



Задача 52914

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники ]
Сложность: 4+
Классы: 8,9

Дана окружность с диаметром BC. Вторая окружность с центром в точке C пересекает первую окружность в точках D и E, а диаметр BC — в точке F, FK — диаметр второй окружности. На дуге EK, не содержащей точки D, взята точка L, отличная от точек E и K. Отрезок BL пересекает первую окружность в точке M. Известно, что ML = m, EM = n. Найдите DM.

Прислать комментарий     Решение


Задача 52915

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники ]
Сложность: 4+
Классы: 8,9

Дана окружность с диаметром QR. Вторая окружность с центром в точке Q пересекает первую окружность в точках P и S, а диаметр QR — в точке B. На дуге BS, не содержащей точки P, взята точка C, отличная от точек B и S. Луч RC пересекает первую окружность в точке D. Известно, что DS = a, DP = b. Найдите DC.

Прислать комментарий     Решение


Задача 52916

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники ]
Сложность: 4+
Классы: 8,9

Дана окружность с диаметром LM. Вторая окружность с центром в точке M пересекает первую окружность в точках N и Q, а диаметр LM — в точке B. BC — диаметр второй окружности. На дуге NC, не содержащей точки Q, взята точка D, отличная от точек N и C. Отрезок LD пересекает первую окружность в точке E. Известно, что EN = n, ED = m. Найдите QE.

Прислать комментарий     Решение


Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 35658

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Диаметр, основные свойства ]
Сложность: 2+
Классы: 8,9

Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .