ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Существуют ли числа такие p и q, что уравнения  x² + (p – 1)x + q = 0  и  x² + (p + 1)x + q = 0  имеют по два различных корня, а уравнение
x² + px + q = 0  не имеет корней?

Вниз   Решение


На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Можно ли добиться того, чтобы все числа на доске стали нулями?

ВверхВниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – трапеция ABCD . Отношение оснований AD и BC этой трапеции равно 2. Постройте сечение пирамиды плоскостью, проходящей через точку D и середины ребер SA и SB . В каком отношении эта плоскость делит ребро SC ?

ВверхВниз   Решение


Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.

ВверхВниз   Решение


Про квадратный трехчлен  f(x) = ax² – ax + 1  известно, что  | f(x)| ≤ 1  при  0 ≤ x ≤ 1.  Найдите наибольшее возможное значение а.

ВверхВниз   Решение


На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?

ВверхВниз   Решение


Дан тетраэдр ABCD . Точки M , N и K лежат на ребрах AD , BC и DC соответственно, причём AM:MD = 1:3 , BN:NC = 1:1 и CK:KD = 1:2 . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит ребро AB ?

ВверхВниз   Решение


На сколько нулей оканчивается число 100!?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 116533

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

Прислать комментарий     Решение

Задача 30363

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Может ли n! оканчиваться ровно на пять нулей?

Прислать комментарий     Решение

Задача 30364

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

На сколько нулей оканчивается число 100!?

Прислать комментарий     Решение

Задача 32778

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

Прислать комментарий     Решение

Задача 35455

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что число 100! не является полным квадратом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .