ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Сколько цифр у числа 21000?

Вниз   Решение


Режем на равные части. Разрежьте фигуру на равные части (на две одинаковые по форме, и по площади части).


ВверхВниз   Решение


Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.

ВверхВниз   Решение


Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

ВверхВниз   Решение


AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём  AC1 : C1B = 1 : 2.  Отрезки AA1 и CC1 пересекаются в точке M.
Найдите отношения  AM : MA1  и  CM : MC1.

ВверхВниз   Решение


В таблице m × n расставлены числа так, что сумма чисел в любой строке или столбце равна 1. Докажите, что m = n.

Примечание. Как ни странно, но в некотором смысле это тоже задача на инвариант.

ВверхВниз   Решение


Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

ВверхВниз   Решение


Имеются два кошелька и одна монета. Внутри первого кошелька одна монета, и внутри второго кошелька одна монета. Как такое может быть?

ВверхВниз   Решение


В правильной четырёхугольной усечённой пирамиде середина N ребра B1C1 верхней грани A1B1C1D1 соединена с серединой M ребра AB нижней грани ABCD. Прямые B1C1 и AB не лежат в одной плоскости. Докажите, что проекции рёбер B1C1 и AB на прямую MN равны между собой.

ВверхВниз   Решение


Автор: Храбров А.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



Задача 73592

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 8,9,10

a) Найдите число k, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и k).
б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.

Прислать комментарий     Решение

Задача 109712

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

Прислать комментарий     Решение

Задача 109720

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Прислать комментарий     Решение

Задача 66168

Темы:   [ Количество и сумма делителей числа ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 4
Классы: 9,10,11

Изначально на доске написано натуральное число N. В любой момент Миша может выбрать число  a > 1  на доске, стереть его и дописать все натуральные делители a, кроме него самого (на доске могут появляться одинаковые числа). Через некоторое время оказалось, что на доске написано N² чисел. При каких N это могло случиться?

Прислать комментарий     Решение

Задача 66614

Темы:   [ Количество и сумма делителей числа ]
[ Теория чисел. Делимость (прочее) ]
[ Целочисленные решетки (прочее) ]
Сложность: 4
Классы: 9,10,11

Существует ли такая гипербола, задаваемая уравнением вида $y=\frac{a}{x}$, что в первой координатной четверти (x>0, y>0) под ней лежат ровно 82 точки с целочисленными координатами?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .