ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110025  (#00.4.11.2)

Темы:   [ Цилиндр ]
[ Покрытия ]
[ Шар и его части ]
Сложность: 4
Классы: 10,11

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Прислать комментарий     Решение


Задача 110026  (#00.4.11.3)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Последовательность a1, a2,..,a2000 действительных чисел такова, что для любого натурального n , 1 n2000 , выполняется равенство

a13+a23+..+an3=(a1+a2+..+an)2.

Докажите, что все члены этой последовательности – целые числа.
Прислать комментарий     Решение

Задача 110034  (#00.4.11.4)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Замятин В.

При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Прислать комментарий     Решение

Задача 110027  (#00.4.11.5)

Темы:   [ Неравенство Коши ]
[ Иррациональные неравенства ]
Сложность: 4+
Классы: 8,9,10

Автор: Храбров А.

Для неотрицательных чисел x и y, не превосходящих 1, докажите, что  

Прислать комментарий     Решение

Задача 108249  (#00.4.11.6)

Темы:   [ Теоремы Чевы и Менелая ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается стороны AC в точке K. Вторая окружность, также с центром O, пересекает все стороны треугольника ABC. Пусть E и F – её точки пересечения со сторонами соответственно AB и BC, ближайшие к вершине B; B1 и B2 – точки её пересечения со стороной AC, B1 – ближе к A. Докажите, что точки B, K и точка P пересечения отрезков B2E и B1F лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .