ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110039  (#00.4.9.1)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Свойства коэффициентов многочлена ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Миша решил уравнение  x² + ax + b = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

Прислать комментарий     Решение

Задача 110040  (#00.4.9.2)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Существуют ли различные взаимно простые в совокупности натуральные числа a, b и c, большие 1 и такие, что  2a + 1  делится на b,  2b + 1  делится на c, а  2c + 1  делится на a?

Прислать комментарий     Решение

Задача 110041  (#00.4.9.3)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Покрытия ]
Сложность: 4-
Классы: 7,8,9,10

На прямой имеется 2n+1 отрезок. Любой отрезок пересекается по крайней мере с n другими. Докажите, что существует отрезок, пересекающийся со всеми остальными.
Прислать комментарий     Решение


Задача 108245  (#00.4.9.4)

Темы:   [ Пересекающиеся окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 5-
Классы: 8,9,10

Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

Прислать комментарий     Решение

Задача 110043  (#00.4.9.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Симметрия и инволютивные преобразования ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.

Докажите, что сумма всех чисел в таблице делится на 200.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .