|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться? На плоскости дано n Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей? Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число. В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки. |
Страница: << 1 2 3 4 5 [Всего задач: 24]
Страница: << 1 2 3 4 5 [Всего задач: 24] |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|