|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра. Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные. Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) Среди всех таких чисел n, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части) n треугольников, найдите наименьшее. Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC. |
Страница: 1 2 3 >> [Всего задач: 12]
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?
Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?
Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.
В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что OI ⊥ AC.
Страница: 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|