|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если ∠AMB = α и AB = a. Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны? Среди математиков каждый седьмой — философ, а среди философов каждый девятый — математик. Кого больше: философов или математиков?
Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида 10n ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21? Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0? Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Рациональные числа x, y и z таковы, что все числа x + y² + z², x² + y + z² и x² + y² + z целые. Докажите, что число 2x целое.
Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.
Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il.
Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
Обозначим через S(n, k) количество не делящихся на k коэффициентов разложения многочлена (x + 1)n по степеням x.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|