|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подисточники:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) На сторонах треугольника ABC построены собственно подобные треугольники A1BC, CAB1 и BC1A. Пусть A2, B2 и C2 — соответственные точки этих треугольников. Докажите, что б) Докажите, что центры правильных треугольников, построенных внешним (внутренним) образом на сторонах треугольника ABC, образуют правильный треугольник. Сплав из золота и серебра массой 13 кг 850 г при полном погружении в воду вытеснил 900 г воды. Определить количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19,3 кг/дм3, а серебра – 10,5 кг/дм3. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 132]
Сплав из золота и серебра массой 13 кг 850 г при полном погружении в воду вытеснил 900 г воды. Определить количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19,3 кг/дм3, а серебра – 10,5 кг/дм3.
Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).
Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 132] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|