ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 109004

Темы:   [ Наглядная геометрия в пространстве ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 10,11

Существуют ли в пространстве 4 точки A,B,C,D такие, что AB=CD=8 см; AC=BD=10 см; AB+BC=13 см?
Прислать комментарий     Решение


Задача 108742

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8,9

Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

Прислать комментарий     Решение

Задача 108743

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Прислать комментарий     Решение

Задача 108749

Темы:   [ Периметр треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9

Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

Прислать комментарий     Решение

Задача 109006

Тема:   [ Теорема косинусов ]
Сложность: 3
Классы: 8,9,10

Стороны треугольника a,b и c . A=60o . Доказать, что

3/(a+b+c)=1/(a+b)+1/(a+c).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .