ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Последовательность многочленов  P0(x) = 1,  P1(x) = xP2(x) = x² – 1, ...  задается условием  Pn+1(x) = xPn(x) – Pn–1(x).
Докажите, что уравнение  P100(x) = 0  имеет 100 различных действительных корней на отрезке  [–2, 2].  Что это за корни?

Вниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу вписанной окружности равно k. Найдите углы треугольника.

ВверхВниз   Решение


На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100?

ВверхВниз   Решение


На плоскости даны две концентрические окружности с центром в точке A . Пусть B  — произвольная точка одной из этих окружностей, C  — другой. Для каждого треугольника ABC рассмотрим две окружности одинакового радиуса, касающиеся друг друга в точке K , причем одна окружность касается прямой AB в точке B , а другая — прямой AC в точке C . Найдите ГМТ K .

ВверхВниз   Решение


Пусть a , b и c – стороны треугольника, ma , mb и mc – медианы, проведённые к этим сторонам, D – диаметр окружности, описанной около треугольника. Докажите, что

+ + 6D.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 109572  (#94.5.9.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Покрытия ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

Автор: Перлин А.

Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата n ×n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата 100×100 , состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате 100× 100 .)
Прислать комментарий     Решение


Задача 109558  (#94.5.10.1)

Темы:   [ Уравнения с модулями ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

Прислать комментарий     Решение

Задача 109567  (#94.5.10.2)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10

Автор: Кохась М.

На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?

Прислать комментарий     Решение

Задача 108204  (#94.5.10.3)

Темы:   [ Неравенства с медианами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11

Пусть a , b и c – стороны треугольника, ma , mb и mc – медианы, проведённые к этим сторонам, D – диаметр окружности, описанной около треугольника. Докажите, что

+ + 6D.

Прислать комментарий     Решение

Задача 109560  (#94.5.10.4)

Темы:   [ Раскраски ]
[ Правильные многоугольники ]
[ Задачи с ограничениями ]
Сложность: 4+
Классы: 8,9,10,11

В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .