ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109558
Темы:    [ Уравнения с модулями ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.


Решение

Каждый корень данного уравнения является корнем одного из квадратных трёхчленов  ± P1 ± P2 ± P3  с некоторым набором знаков. Таких наборов 8, и все они дают действительно квадратные трёхчлены, так как коэффициент при x² нечётен. Однако двум противоположным наборам знаков соответствуют квадратные уравнения, имеющие одни и те же корни. Значит, все решения уравнения  |P1(x)| + |P2(x)| = |P3(x)|  содержатся среди корней четырёх квадратных уравнений. Следовательно, их не более восьми.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 5
класс
Класс 10
задача
Номер 94.5.10.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .