|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом? В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам. Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма? |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
На шахматную доску произвольным образом уложили 32 доминошки
(прямоугольника 1×2), так что доминошки не перекрываются. Затем к доске добавили
одну клетку, как показано на рисунке. Разрешается вынимать любую доминошку, а
затем класть её на две соседние пустые клетки.
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Страница: << 1 2 3 4 5 >> [Всего задач: 22] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|