ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?

Вниз   Решение



а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

ВверхВниз   Решение


Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?

ВверхВниз   Решение


В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.

ВверхВниз   Решение


Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 105173

Темы:   [ Выпуклые многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Комбинаторная геометрия (прочее) ]
[ Теорема Хелли ]
Сложность: 5-
Классы: 7,8,9


а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
Прислать комментарий     Решение


Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть $l_a$, $l_b$ и $l_c$ – длины биссектрис углов $A$, $B$ и $C$ треугольника $ABC$, а $m_a$, $m_b$ и $m_c$ – длины соответствующих медиан. Докажите, что $$ \frac{l_a}{m_a} + \frac{l_b}{m_b} +\frac{l_c}{m_c} > 1.$$
Прислать комментарий     Решение


Задача 108111

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Радиус описанной окружности треугольника ABC равен радиусу окружности, касающейся стороны AB в точке C' и продолжений двух других сторон в точках A' и B' . Докажите, что центр описанной окружности треугольника ABC совпадает с ортоцентром (точкой пересечения высот) треугольника A'B'C' .
Прислать комментарий     Решение


Задача 105174

Темы:   [ Замощения костями домино и плитками ]
[ Геометрия на клетчатой бумаге ]
[ Полуинварианты ]
[ Процессы и операции ]
Сложность: 5
Классы: 8

На шахматную доску произвольным образом уложили 32 доминошки (прямоугольника 1×2), так что доминошки не перекрываются. Затем к доске добавили одну клетку, как показано на рисунке. Разрешается вынимать любую доминошку, а затем класть её на две соседние пустые клетки.

Докажите, что можно расположить все доминошки горизонтально.
Прислать комментарий     Решение


Задача 105188

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Проектирование помогает решить задачу ]
[ Параллельное проектирование (прочее) ]
[ Малые шевеления ]
[ Аффинная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .