|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно? В трапеции с перпендикулярными диагоналями высота равна средней линии. Докажите, что трапеция равнобокая. |
Страница: 1 2 3 >> [Всего задач: 12]
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
B равнобедренном треугольнике ABС на боковой стороне BС отмечена точка M так, что отрезок MС равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.
Из листа бумаги в клетку вырезали квадрат 2×2.
Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
Страница: 1 2 3 >> [Всего задач: 12] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|