ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 111646

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Даны три различных натуральных числа, одно из которых равно полусумме двух других.
Может ли произведение этих трёх чисел являться точной 2008-й степенью натурального числа?

Прислать комментарий     Решение

Задача 111647

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 8,9

Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

Прислать комментарий     Решение

Задача 111648

Темы:   [ Раскладки и разбиения ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 10,11

У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.

Прислать комментарий     Решение

Задача 111649

Тема:   [ Иррациональные уравнения ]
Сложность: 3+
Классы: 10,11

Решите систему уравнений  (n > 2) 

     

    x1x2 = 1.

Прислать комментарий     Решение

Задача 111650

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь четырехугольника ]
[ Вписанные и описанные многоугольники ]
Сложность: 3+
Классы: 10,11

В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .