ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Гальперин Г.А.

Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 97893

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Прислать комментарий     Решение

Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:   

Прислать комментарий     Решение

Задача 103875

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Ребусы ]
Сложность: 2+
Классы: 7,8

2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Предыдущий год-палиндром был 11 лет назад (1991). Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)?

Прислать комментарий     Решение


Задача 108074

Темы:   [ Неравенства для углов треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Прислать комментарий     Решение

Задача 111327

Темы:   [ Десятичная система счисления ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .