ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двое играют в следующую игру. Каждый игрок по очереди вычеркивает 9 чисел (по своему выбору) из последовательности 1,2,...,100,101. После одиннадцати таких вычеркиваний останутся 2 числа. Первому игроку присуждается столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 87239

Темы:   [ Перпендикулярные плоскости ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Докажите, что две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через прямую, перпендикулярную другой. (Определение.}Две плоскости называются перпендикулярными, если угол между ними равен 90o ).
Прислать комментарий     Решение


Задача 87240

Темы:   [ Перпендикулярные плоскости ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 8,9

На перпендикуляре к плоскости прямоугольника ABCD , проходящем через точку A , взята точка P , отличная от A . Докажите, что а) плоскость APB перпендикулярна плоскости APD ; б) плоскость APB перпендикулярна плоскости BPC ; в) плоскость APD перпендикулярна плоскости DPC .
Прислать комментарий     Решение


Задача 87241

Темы:   [ Перпендикулярные плоскости ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой пересечения этих плоскостей, перпендикулярна второй плоскости.
Прислать комментарий     Решение


Задача 87242

Темы:   [ Перпендикулярные плоскости ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Через точку, лежащую в одной из двух перпендикулярных поскостей, проведена прямая, перпендикулярная второй плоскости. Докажите, что эта прямая лежит в первой плоскости.
Прислать комментарий     Решение


Задача 87243

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 8,9

Существует ли четырёхугольная пирамида, у которой две противоположные боковые грани перпендикулярны плоскости основания?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .