ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 65327

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Илья Муромец встречает трёхголового Змея Горыныча. И начинается битва. Каждую минуту Илья отрубает Змею одну голову. С вероятностью ¼ на месте срубленной головы вырастает две новых, с вероятностью ⅓ – только одна новая голова и с вероятностью 5/12 – ни одной головы. Змей считается побеждённым, если у него не осталось ни одной головы. Найдите вероятность того, что рано или поздно Илья победит Змея.

Прислать комментарий     Решение

Задача 65320

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Целочисленные решетки (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 9,10,11

Муха двигается из начала координат только вправо или вверх по линиям целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо.
  а) Докажите, что рано или поздно муха достигнет точки с абсциссой 2011.
  б) Найдите математическое ожидание ординаты Мухи в момент, когда муха достигла абсциссы 2011.

Прислать комментарий     Решение

Задача 65323

Темы:   [ Дискретное распределение ]
[ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 10,11

  На шкуре у Носорога складки – вертикальные и горизонтальные. Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии  (abcd)  или просто Носорог  (abcd).
  Если Носорог чешется каким-то боком о баобаб вверх-вниз, и у Носорога на этом боку есть две горизонтальные складки, то эти две горизонтальные складки разглаживаются. Если двух таких складок нет, то ничего не происходит.
  Аналогично если Носорог чешется боком вперед-назад, и на этом боку есть две вертикальные складки, то они разглаживаются, если же таких двух складок не найдётся, то ничего не происходит.
  Если на каком-то боку две какие-то складки разглаживаются, то на другом боку немедленно появляется две новые складки: одна вертикальная и одна горизонтальная.
  Носороги чешутся часто, случайным боком о случайные баобабы в случайных направлениях.

  Вначале в саванне было стадо Носорогов  (0221).  Докажите, что через некоторое время в саванне появится Носорог  (2021).

Прислать комментарий     Решение

Задача 65276

Темы:   [ Дискретное распределение ]
[ Алгебраические неравенства (прочее) ]
[ Число e ]
[ Предел последовательности, сходимость ]
[ Ограниченность, монотонность ]
Сложность: 4
Классы: 9,10,11

  По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
  а) Найти среднее количество поражённых мишеней.
  б) Может ли среднее количество поражённых мишеней быть меньше n/2?

Прислать комментарий     Решение

Задача 73680

Темы:   [ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Средние величины ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .