ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 271]      



Задача 109561

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для натуральных чисел k, m и n справедливо неравенство   [k, m][m, n][n, k] ≥ [k, m, n]².

Прислать комментарий     Решение

Задача 109864

Темы:   [ НОД и НОК. Взаимная простота ]
[ Квадратные уравнения. Теорема Виета ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа m и n таковы, что  НОК(m, n) + НОД(m, n) = m + n.  Докажите, что одно из чисел m или n делится на другое.

Прислать комментарий     Решение

Задача 115412

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

Прислать комментарий     Решение

Задача 116270

Темы:   [ НОД и НОК. Взаимная простота ]
[ Четность и нечетность ]
[ Раскраски ]
[ Процессы и операции ]
Сложность: 3+
Классы: 8,9,10,11

По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в чёрный цвет. При каких k можно за несколько таких ходов покрасить все 100 камней в чёрный цвет?

Прислать комментарий     Решение

Задача 116666

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Назовём натуральные числа a и b друзьями, если их произведение является точным квадратом. Докажите, что если a – друг b, то a – друг НОД(a, b).

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 271]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .