Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 272]
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, n + 3, n + 4 есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.
Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего
общего кратного равен наибольшему общему делителю самих чисел.
Найти все такие двузначные числа , что при умножении на некоторое целое число
получается число, предпоследняя цифра которого – 5.
Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.
Дано 10 натуральных чисел: a1 < a2 < a3 < ... < a10. Доказать, что их
наименьшее общее кратное не меньше 10a1.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 272]