Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 272]
|
|
Сложность: 4- Классы: 9,10,11
|
Наименьшее общее кратное натуральных чисел a, b будем обозначать [a, b]. Пусть натуральное число n таково, что [n, n + 1] > [n, n + 2] > ... > [n, n + 35].
Докажите, что [n, n + 35] > [n, n + 36].
|
|
Сложность: 4- Классы: 8,9,10
|
a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.
б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?
|
|
Сложность: 4- Классы: 10,11
|
По кругу стоят 101000 натуральных чисел. Между каждыми двумя соседними числами записали их наименьшее общее кратное.
Могут ли эти наименьшие общие кратные образовать 101000 последовательных чисел (расположенных в каком-то порядке)?
По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Даны два взаимно простых числа p, q, больших 1 и различающихся больше, чем
на 1. Докажите, что найдётся натуральное n, для которого НОК(p + n, q + n) < НОК(p, q).
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 272]