ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 111]      



Задача 111075

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте хорду данной окружности, равную и параллельную данному отрезку.
Прислать комментарий     Решение


Задача 116288

Темы:   [ Признаки и свойства касательной ]
[ ГМТ - окружность или дуга окружности ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Через каждую точку A , лежащую на данной окружности, проводится касательная и на ней откладывается отрезок AM , равный данному. Найдите геометрическое место точек M .
Прислать комментарий     Решение


Задача 116178

Темы:   [ Построение треугольников по различным элементам ]
[ ГМТ - окружность или дуга окружности ]
[ Метод ГМТ ]
[ Гомотетия (ГМТ) ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (исследование вопроса о количестве решений не требуется).

Прислать комментарий     Решение

Задача 35153

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ ГМТ - окружность или дуга окружности ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3
Классы: 10,11

Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?
Прислать комментарий     Решение


Задача 52612

Темы:   [ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ и вписанный угол ]
[ Вписанный угол (построения) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .