Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 111]
|
|
|
Сложность: 3+ Классы: 9,10
|
Найти геометрическое место четвёртых вершин прямоугольников, три вершины
которых лежат на двух данных концентрических окружностях, а стороны параллельны
двум данным прямым.
С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.
Точки
A и
B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах
AB.
Дана окружность и точка A внутри неё.
Найдите геометрическое место вершин C всевозможных прямоугольников ABCD, где точки B и D лежат на окружности.
а) На окружности фиксированы точки
A и
B, а
точки
A1 и
B1 движутся по той же окружности так, что величина
дуги
A1B1 остается постоянной;
M — точка пересечения
прямых
AA1 и
BB1. Найдите ГМТ
M.
б) В окружность вписаны треугольники
ABC и
A1B1C1,
причем треугольник
ABC неподвижен, а треугольник
A1B1C1
вращается. Докажите, что прямые
AA1,
BB1 и
CC1 пересекаются
в одной точке не более чем при одном положении треугольника
A1B1C1.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 111]