Условие
Точки
A и
B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах
AB.
Решение
Пусть K – произвольная точка внутри данной окружности. Хорда, серединой которой является K, перпендикулярна OK. Поэтому она пересекает отрезок AB тогда и только тогда, когда один из углов OKA, OKB не острый, а другой – не тупой (см. рис. слева). Следовательно, искомое множество состоит из точек, лежащих внутри или на границе одного из кругов с диаметрами OA, OB и вне или на границе другого (рис. справа).
Источники и прецеденты использования
|
|
|
web-сайт |
|
Название |
Система задач по геометрии Р.К.Гордина |
|
URL |
http://zadachi.mccme.ru |
|
задача |
|
Номер |
6216 |
|
|
|
|
олимпиада |
|
Название |
Олимпиада по геометрии имени И.Ф. Шарыгина |
|
год |
|
Год |
2005 |
|
класс |
|
Класс |
9 |
|
Задача |
|
Номер |
3 |
|
|
|
|
олимпиада |
|
Название |
Московская математическая олимпиада |
|
год |
|
Номер |
59 |
|
Год |
1996 |
|
вариант |
|
Класс |
9 |
|
задача |
|
Номер |
5 |