ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1391]      



Задача 55205

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

Прислать комментарий     Решение

Задача 55274

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9

Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

Прислать комментарий     Решение

Задача 55304

Тема:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника равны a и b . Найдите биссектрису, проведённую из вершины прямого угла.
Прислать комментарий     Решение


Задача 56494

Темы:   [ Отношение площадей подобных треугольников ]
[ Свойства симметрии и центра симметрии ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

Прислать комментарий     Решение

Задача 56752

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .