Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 331]
В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны.
В прямоугольнике ABCD на диагонали AC отмечена точка K так, что CK = BC. На стороне ВС отмечена точка М так, что КМ = СМ.
Докажите, что АK + ВМ = СМ.
Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.
|
|
|
Сложность: 4- Классы: 8,9,10
|
На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что CG = DF. Докажите, что угол BGE меньше половины угла AED.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 331]