ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 2214]      



Задача 52571

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

Докажите, что всякая трапеция, вписанная в окружность, — равнобедренная.

Прислать комментарий     Решение


Задача 52645

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.

Прислать комментарий     Решение


Задача 52696

Темы:   [ Описанные четырехугольники ]
[ Площадь четырехугольника ]
Сложность: 3-
Классы: 8,9

Сумма двух противоположных сторон описанного четырёхугольника равна 20, а радиус вписанной окружности равен 4. Найдите площадь четырёхугольника.

Прислать комментарий     Решение


Задача 53475

 [Теорема Вариньона]
Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Докажите, что середины сторон любого четырёхугольника являются вершинами параллелограмма.

Прислать комментарий     Решение


Задача 53483

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 2214]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .