ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1274]      



Задача 56549

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8

Окружность разделена на равные дуги n диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки M, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника.

Прислать комментарий     Решение

Задача 56556

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.
Прислать комментарий     Решение


Задача 56557

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Диагонали равнобедренной трапеции ABCD с боковой стороной AB пересекаются в точке P. Докажите, что центр O ее описанной окружности лежит на описанной окружности треугольника APB.
Прислать комментарий     Решение


Задача 56558

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке;  A1, B1, C1 и D1 — середины дуг AB, BC, CD и DA соответственно. Докажите, что  A1C1 $ \perp$ B1D1.
Прислать комментарий     Решение


Задача 56559

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Внутри треугольника ABC взята точка P так, что  $ \angle$BPC = $ \angle$A + 60o,$ \angle$APC = $ \angle$B + 60o и  $ \angle$APB = $ \angle$C + 60o. Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A', B' и C'. Докажите, что треугольник A'B'C' правильный.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1274]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .