ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56549
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8
В корзину
Прислать комментарий

Условие

Окружность разделена на равные дуги n диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки M, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника.


Решение

Основания перпендикуляров, опущенных из точки M на диаметры, лежат на окружности S с диаметром OM (O — центр исходной окружности). Точки пересечения данных диаметров с окружностью S, отличные от точки O, делят ее на n дуг. Так как на все дуги, не содержащие точку O, опираются углы 180°/n, то угловые величины этих дуг равны 360°/n. Поэтому угловая величина дуги, на которой лежит точка O, также равна 360°/n. Следовательно, основания перпендикуляров делят окружность S на n равных дуг.

Замечания

То, что точка M лежит внутри окружности, несущественно: радиус окружности можно увеличить.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 1
Название Углы, опирающиеся на равные дуги
Тема Углы, опирающиеся на равные дуги и равные хорды
задача
Номер 02.009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .