Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 74]
|
|
|
Сложность: 5 Классы: 10,11
|
Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно
выбрать несколько попарно непересекающихся кругов, сумма площадей которых
больше

. (Сравни с задачей
78201.)
На плоскости расположен круг. Какое наименьшее количество прямых надо провести,
чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз),
можно было накрыть им любую заданную точку плоскости?
|
|
|
Сложность: 6 Классы: 10,11
|
Некоторое количество точек расположено на плоскости так, что каждые 3 из них
можно заключить в круг радиуса
r = 1. Доказать, что тогда и все точки можно
заключить в круг радиуса 1.
|
|
|
Сложность: 6 Классы: 10,11
|
На плоскости дано конечное множество точек
X и
правильный треугольник
T . Известно, что любое подмножество
X'
множества
X , состоящее из не более
9
точек, можно покрыть
двумя параллельными переносами треугольника
T . Докажите, что
все множество
X можно покрыть двумя параллельными переносами
T .
|
|
|
Сложность: 6+ Классы: 10,11
|
Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары.
Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 74]