ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74]      



Задача 58273

Тема:   [ Покрытия ]
Сложность: 6+
Классы: 8,9

Докажите, что любые n точек на плоскости всегда можно накрыть несколькими непересекающимися кругами так, что сумма их диаметров меньше n и расстояние между любыми двумя из них больше 1.
Прислать комментарий     Решение


Задача 58274

Тема:   [ Покрытия ]
Сложность: 6+
Классы: 8,9

На круглом столе радиуса R расположено без наложений n круглых монет радиуса r, причем больше нельзя положить ни одной монеты. Докажите, что R/r$ \le$2$ \sqrt{n}$ + 1.
Прислать комментарий     Решение


Задача 35070

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD отметили точки E, F, G, H соответственно.
Докажите, что описанные круги треугольников HAE, EBF, FCG и GDH покрывают четырёхугольник ABCD целиком.

Прислать комментарий     Решение

Задача 35120

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Покрытия ]
Сложность: 3
Классы: 9,10

Можно ли осветить круглую арену 100 прожекторами так, чтобы каждый из них освещал выпуклую фигуру, никакой из них не освещал всю арену, но любые два из них вместе уже освещали всю арену?
Прислать комментарий     Решение


Задача 34970

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
Сложность: 3+
Классы: 8,9

Несколько углов покрывают плоскость. Докажите, что сумма этих углов не меньше 360°.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .