Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 61]
|
|
Сложность: 4- Классы: 7,8,9
|
В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1.
Докажите, что плитка 1×1 либо лежит в центре, либо примыкает к границам квадрата.
|
|
Сложность: 4- Классы: 7,8,9
|
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?
Дно прямоугольной коробки выложено плитками размером
2×2 и 1×4. Плитки высыпали из
коробки и потеряли одну плитку 2×2. Вместо нее достали плитку
1×4. Докажите, что выложить дно коробки плитками теперь не
удастся.
Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Выпуклый
n-угольник разбит на треугольники
непересекающимися диагоналями, причем в каждой его вершине сходится
нечетное число треугольников. Докажите, что
n делится на 3.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 61]