ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



Задача 97858

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Замощения костями домино и плитками ]
Сложность: 4-
Классы: 7,8,9

Автор: Фольклор

В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1.
Докажите, что плитка 1×1 либо лежит в центре, либо примыкает к границам квадрата.

Прислать комментарий     Решение

Задача 97895

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9

Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

Прислать комментарий     Решение

Задача 58187

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Дно прямоугольной коробки выложено плитками размером 2×2 и 1×4. Плитки высыпали из коробки и потеряли одну плитку 2×2. Вместо нее достали плитку 1×4. Докажите, что выложить дно коробки плитками теперь не удастся.
Прислать комментарий     Решение


Задача 58188

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Из листа клетчатой бумаги размером 29×29 клеток вырезано 99 квадратиков размером 2×2 клетки. Докажите, что из него можно вырезать еще один такой квадратик.
Прислать комментарий     Решение


Задача 58189

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Выпуклый n-угольник разбит на треугольники непересекающимися диагоналями, причем в каждой его вершине сходится нечетное число треугольников. Докажите, что n делится на 3.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .