ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 61]      



Задача 58200

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4+
Классы: 8,9

Многоугольник разрезан непересекающимися диагоналями на треугольники. Докажите, что вершины многоугольника можно раскрасить в три цвета так, что все вершины каждого из полученных треугольников будут разного цвета.
Прислать комментарий     Решение


Задача 58201

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Индукция в геометрии ]
[ Раскраски ]
Сложность: 4+
Классы: 7,8,9

Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.
Прислать комментарий     Решение


Задача 58197

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 5
Классы: 8,9

Плоскость раскрашена в семь цветов. Обязательно ли найдутся две точки одного цвета, расстояние между которыми равно 1?
Прислать комментарий     Решение


Задача 58186

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 6
Классы: 8,9

Правильный треугольник разбит на n2 одинаковых правильных треугольников (рис.). Часть из них занумерована числами 1, 2,..., m, причем треугольники с последовательными номерами имеют смежные стороны. Докажите, что m$ \le$n2 - n + 1.
Прислать комментарий     Решение


Задача 58199

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 6
Классы: 8,9

Триангуляцией многоугольника называют его разбиение на треугольники, обладающее тем свойством, что эти треугольники либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек (т. е. вершина одного треугольника не может лежать на стороне другого). Докажите, что треугольники триангуляции можно раскрасить в три цвета так, что имеющие общую сторону треугольники будут разного цвета.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .