Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 127]
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.
|
|
|
Сложность: 4- Классы: 8,9,10
|
У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует
трапеция с вершинами в отмеченных точках.
|
|
|
Сложность: 4- Классы: 7,8,9
|
В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.
|
|
|
Сложность: 4- Классы: 10,11
|
Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 127]