|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Максимальное время работы на одном тесте: 1 секунда В процессе установки турникетов в автобусах, разработчики столкнулись с проблемой проверки подлинности билета. Для ее решения был придуман следующий способ защиты от подделок. Информация, записанная на билете, кодируется K числами (0 или 1). При этом непосредственно на билете записывается последовательность из N чисел (N ³ K) так, что числа, записанные на расстоянии K, совпадают. Таким образом, для проверки подлинности билета достаточно проверить, что все числа на расстоянии K совпадают. К сожалению, при считывании информации с билета иногда могут происходить ошибки - считается, что одно из чисел может исказиться (то есть 0 заменится на 1, или 1 - на 0). Такой билет все равно нужно считать подлинным. Во всех остальных случаях билет считается поддельным. Напишите программу, которая по информации, считанной с билета, устанавливает его подлинность, и указывает, при считывании какого из чисел могла произойти ошибка. Формат входных данных В первой строке входного файла d.in записаны числа N и K (1 £ N £ 50000, 1 £ K £ 1000, K £ N). Во второй строке записано N чисел, каждое из которых является 0 или 1 - информация, считанная с билета. Формат выходных данных В первой строке выходного файла d.out должно быть записано одно из двух сообщений - OK или FAIL (первое сообщение обозначает, что билет признан подлинным, второе - поддельным). В случае, если билет подлинный, во второй строке выведите 0, если все числа были считаны правильно, или номер числа, в котором при считывании произошла ошибка. Если возможных ответов несколько, выведите любой из них (в частности, если для признания билета подлинным можно считать, что ошибок при считывании не было, а можно считать, что была ошибка в одном из чисел - правильным является любой из вариантов ответа). Примеры
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 368]
Доказать, что существует бесконечно много натуральных чисел,
не представимых в виде
Найти все прямоугольники с натуральными сторонами, у которых периметр равен площади.
Доказать, что существует бесконечно много натуральных чисел, не представимых в виде n² + p (p – простое).
Решить в простых числах уравнение pqr = 7(p + q + r).
Решить в натуральных числах уравнение 1 + x + x² + x³ = 2y.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 368] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|