ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 81]      



Задача 109664

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Касающиеся окружности ]
[ Исследование квадратного трехчлена ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 9,10,11

Внутри параболы  y = x²  расположены несовпадающие окружности ω1, ω2, ω3, ... так, что при каждом n > 1 окружность ωn касается ветвей параболы и внешним образом окружности ωn–1 (см. рис.). Найдите радиус окружности σ1998, если известно, что диаметр ω1 равен 1 и она касается параболы в её вершине.

Прислать комментарий     Решение

Задача 109668

Темы:   [ Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
[ Кубические многочлены ]
Сложность: 4-
Классы: 9,10,11

Прямые, параллельные оси Ox, пересекают график функции  y = ax³ + bx² + cx + d:  первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.

Прислать комментарий     Решение

Задача 67002

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)
Прислать комментарий     Решение


Задача 73541

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
[ Симметрия помогает решить задачу ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 7,8,9,10

Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая,
а какая – минутная?
Прислать комментарий     Решение


Задача 115366

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4
Классы: 8,9,10

Семь лыжников с номерами 1, 2, ... , 7 ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Оказалось, что каждый лыжник ровно дважды участвовал в обгонах. (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) По окончании забега должен быть составлен протокол, состоящий из номеров лыжников в порядке финиширования. Докажите, что в забеге с описанными свойствами может получиться не более двух различных протоколов.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 81]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .