ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 77946

Тема:   [ Неравенства с модулями ]
Сложность: 3-
Классы: 10,11

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.
Прислать комментарий     Решение

Задача 79605

Темы:   [ Неравенства с модулями ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Докажите, что если  a + b + c + d > 0,  a > cb > d,  то  |a + b| > |c + d|.

Прислать комментарий     Решение

Задача 35448

Темы:   [ Модуль числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Докажите, что система неравенств |x|<|y-z|, |y|<|z-x|, |z|<|x-y| не имеет решений.
Прислать комментарий     Решение


Задача 76487

Тема:   [ Уравнения с модулями ]
Сложность: 3
Классы: 10,11

Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

Прислать комментарий     Решение

Задача 98104

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .