ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Доледенок А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 8]      



Задача 67189

Темы:   [ Модуль числа (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 9,10,11

Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.
Прислать комментарий     Решение


Задача 67306

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 7,8,9,10,11

Действительные числа $a$, $b$, $c$, $d$ таковы, что $$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$ Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.
Прислать комментарий     Решение


Задача 66588

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Средняя линия треугольника ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
Прислать комментарий     Решение


Задача 66475

Темы:   [ Общие четырехугольники ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P.
Прислать комментарий     Решение


Задача 67308

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .